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Misinformation has become a pervasive feature of online 
discourse, resulting in increased belief in conspiracy 
theories, rejection of recommended public health inter-

ventions and even genocide1,2. Academics and those working in 
industry have proposed a host of potential solutions, ranging 
from techniques for detecting and removing misinformation to 
empowering users to be more discerning in their sharing habits3–5. 
Despite an abundance of proposed interventions, online misin-
formation remains a global problem6,7. For instance, the 2020 US 
Presidential election and subsequent insurrection at the Capitol 
building highlighted how pervasive online misinformation can 
lead to real-world harm.

Real-world violence occurred as a result of a broader narrative 
that questioned the election’s legitimacy, which arose from a series 
of more specific claims. Most claims were characterized by a brief 
period (that is, hours or days) of rapid growth in discussion and 
sharing2. Some of these incidents quickly died out, while others had 
multiple waves, spread to other platforms and often became consol-
idated into broader narratives. Early response to rapidly spreading 
misinformation provides a source of promise for successful inter-
vention, as disrupting viral spread may have cascading effects on 
narrative consolidation and future engagement. Unfortunately, the 
rapid growth inherent to viral misinformation makes it challenging 
to assess and respond to in a timely manner. Effective intervention 
by platforms and policymakers requires a temporally aware frame-
work for the quantitative comparison of proposed interventions.

Lacking such a framework, it is unclear whether existing strate-
gies are sufficient to produce meaningful results. Crude approaches 
such as outright removal and banning of content or accounts will 
certainly work if applied in excess, yet they come with costs to free-
dom of expression and force private entities to be arbiters of truth. 
For judicious use, questions arise about how soon and how much 
removal is necessary for a meaningful effect. Similarly, interven-
tions that rely on empowering individuals to consume and share 

more discerningly have shown promise in experimental contexts. 
Still, it remains unclear what impact they will have at scale4.

Beyond comparison, we lack an understanding of when—and 
indeed whether—multiple interventions can act synergistically to 
reduce the spread of misinformation. Unfortunately, experiments do 
not adequately address these questions, as their efficacy at scale can-
not be directly inferred. For example, the consequences of variation 
in follower counts, which span eight orders of magnitude, would be 
difficult to capture in the lab. Moreover, the unique behaviour of 
highly influential repeat spreaders (for example, coordination and 
early amplification) will certainly impact dynamics and thus effi-
cacy2. Furthermore, the timescales at which viral misinformation 
events occur online (that is, hours, days or weeks) pose challenges 
to extrapolation from comparatively brief experiments.

Platforms such as Twitter can and do run experiments at scale, 
yet the data and methods are not generally made available for open 
research8. Moreover, private companies conduct these experiments 
in the absence of scientific discourse or ethical oversight. While we 
can observe some changes in response to platform policies, it is nearly 
impossible to disentangle the effect of the policy from unseen algo-
rithmic alterations, interface modifications or behavioural changes9.

Despite these challenges, insight is urgently required, as poorly 
implemented policies or inaction could exacerbate misinformation 
and cost lives10. Towards this goal, we derived and parameterized 
a generative model of misinformation engagement (that is, the 
total discussion and sharing of posts related to false information) 
using a large corpus of Twitter posts collected during the 2020 
presidential and congressional elections in the United States2. This 
approach captures the dynamics of viral misinformation at scale 
and across time in a real-world context. We relied on this model 
to examine the efficacy of misinformation interventions both in 
isolation and when deployed in combination. Finally, we examined 
how the spread of misinformation during viral periods impacts 
subsequent engagement.
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results
Data and model overview. Our analysis relies on a dataset of 
Twitter posts collected during the 2020 US election. This dataset 
was extracted from a broader set of 1.04 billion election-related 
posts collected between 1 September 2020 and 15 December 2020. 
To construct our dataset, we first identified 430 incidents—distinct 
stories that included false, exaggerated or otherwise misleading 
claims or narratives. Search terms were devised for each incident, 
extracting 23 million posts generated by 10.8 million accounts from 
the broader collection. Search terms and incidents were identified 
through real-time monitoring and updating by dozens of analysts 
and several community partners as part of the Election Integrity 
Partnership2. As such, we believe that our dataset provides a thor-
ough—if not comprehensive—overview of misinformation during 
the 2020 US presidential election.

From each incident’s time series, we extracted events, defined 
as periods in which a story exhibited rapid growth and decay 
(Methods and Fig. 1a). This process identified 544 potentially 
viral events, including 14.6 million Twitter posts (tweets, retweets, 
replies and quote tweets). The number of viral events (544) is higher 
than the number of incidents (430) because an incident could have 
more than one viral event. We then derived a generative model of 
viral information spread. Our model was adapted from models of 
super-spreading in infectious disease, allowing us to character-
ize the spread of misinformation and the efficacy of interventions. 

Our model treats virality as temporally varying, increasing propor-
tionally to the out-degree (that is, the number of followers) of the 
accounts that post about a topic. We also assume that virality decays 
over time as the network saturates and new topics arise. The details 
can be found in the Methods.

Using Bayesian methods, we estimated model parameters for 
each event (Fig. 1b,c). As our model is not expected to fit all top-
ics discussed during the election, we developed inclusion criteria 
to ensure that our model was appropriate for a given event and that 
the derived parameters could reproduce the observed engagement 
(Methods). This led to our final dataset of 10.5 million posts from 
454 events. We then simulated total engagement by seeding the 
model with the estimated parameters, posts in the initial five-minute 
time step and the empirical distribution of follower counts for each 
five-minute interval. Our simulated engagement strongly corre-
sponded to the observed engagement for events spanning several 
orders of magnitude in post volume (Supplementary Fig. 2). For 
the results presented throughout, we modified our model in vari-
ous ways and evaluated the total simulated engagement across all 
included events (Fig. 1d and Methods).

Fact-checking and time-lagged approaches. We begin by consid-
ering the impacts of interventions targeting specific content on user 
engagement (that is, total posts: retweets, tweets, quote tweets and 
replies). Among the more commonly employed strategies during 
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Fig. 1 | overview of our data-processing and generative model of viral misinformation spread. a, Example of an event segmented from a larger incident 
(dashed lines). b, Our model fit to the time series for a single event. The dashed line indicates the expected value; the shaded region denotes the 89% CI. 
c, Cumulative engagement as a measure of total misinformation. The lines and shading are as in b. d, Model-simulated platform interventions for a single 
event. The lines indicate median cumulative engagement over 100 simulations. Grey indicates the baseline, blue indicates a 10% ‘nudge’, orange indicates 
banning, yellow indicates a virality circuit breaker and brown indicates the outright removal of content.
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the 2020 US election was identifying specific misinformation and 
taking action, ranging from applying a label to outright removal2. 
These approaches share a common feature of requiring time before 
action is taken. Time is necessary not only to identify misinforma-
tion but also to decide on an appropriate response.

In an extreme case, a platform could remove or hide all content 
matching search terms related to an emerging misinformation inci-
dent. To simulate this, we ran our model until a given time point at 
which growth was stopped entirely (Fig. 2a). Our results indicate 
that outright removal can indeed be effective, producing a 93.8% 
median reduction in total posts (that is, tweets, replies, quote tweets 
and retweets) on the topic, if implemented within 30 minutes (89% 
credible interval (CI), (92.9, 94.4)). Even with a four-hour delay, 
our model indicates reductions of 55.6% (89% CI, (50.7, 59.2), 
Supplementary Table 1). These effects generously assume that plat-
forms can monitor, detect, sufficiently fact-check and implement a 
full removal response within the specified time frame. As such, the 
efficacy is dramatically reduced if only a fraction of events lead to 
action (Fig. 2b and Supplementary Table 2).

A more plausible approach could involve ‘virality circuit break-
ers’, which seek to reduce the spread of a trending misinformation 
topic without explicitly removing content—for example, by sus-
pending algorithmic amplification11. This approach allows plat-
forms to consider ethical ramifications while minimizing the public 
relations challenges accompanying direct forms of action. This 
could aid in lowering the threshold for fact-checking and therefore 

enable quicker response times. We simulate the impact of viral-
ity circuit breakers by proportionately reducing the latent virality 
parameter in our model after a fixed time interval.

Through simulations, we reveal how virality circuit breakers 
can have similar efficacy to outright removal even if the amount 
by which virality is reduced is small (Fig. 2c and Supplementary 
Table 3). For instance, a 10% reduction in virality implemented four 
hours after the start of an event can reduce the spread of misin-
formation by nearly 45.3% (89% CI, (39.4, 49.8)). As with outright 
removal, however, the efficacy is primarily limited by the propor-
tion of events for which the platforms take action (Fig. 2d and 
Supplementary Table 4).

Nudges and reduced reach. A drawback of fact-checking-based 
approaches is that they are most applicable to transparently false or 
readily falsifiable claims2. Many instances of misinformation involve 
claims that are partly true or require non-trivial time to debunk. 
Claims that there are statistical irregularities in reported vote tal-
lies, for example, require a statistician gathering and analysing the 
data and determining merit. Depending on the implementation, 
time-lagged responses may require users do not devise workarounds 
(for example, posting screenshots or off-platform links).

These challenges motivate approaches that leverage individual 
discretion to reduce the spread of misinformation5. For instance, 
encouraging users to consider accuracy has been shown to 
improve discernment of false information by 10–20%4. This can be  
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implemented by warning users when they encounter potentially 
false or misleading information, but this still requires the labelling 
of that content as false, as does fact-checking.

A central question is whether a modest reduction in individual 
sharing behaviour can lead to a more dramatic change in overall 
rates of misinformation. Agent-based models support this notion 
across a range of network topologies4. From the perspective of our 
model, nudge-based approaches can be simulated by maintain-
ing the parameters from the initial model fit while proportionally 
reducing the following of every user that discusses an incident.

Using our model to simulate nudges, we find that they can 
indeed reduce the prevalence of misinformation (Fig. 3a and 
Supplementary Table 5). Nudges that reduce sharing by 5%, 10%, 
20% and 40% result in a 15.2% (3, 24.3), 26.4% (18.1, 33.5), 40.3% 
(34, 45.1) and 55.6% (50.9, 59.0) reduction in cumulative engage-
ment, respectively (Supplementary Table 5). The median effect 
tends to be larger than the nudge, suggesting a degree of feedback 
whereby the individual effect of a nudge is compounded in the mis-
information dynamics.

Account banning. In our dataset, several accounts shared or ampli-
fied misinformation across multiple incidents2. Moreover, some 
of these repeat offenders had outsized audiences compared with 
the average Twitter user—ranging from hundreds of thousands to  

millions of followers. While the removal of repeat offenders during 
the election was rare, several were removed after the violent insur-
rection at the US Capitol on 6 January 2021. The question remains 
whether removing these accounts, or account-focused policies 
in general, would have a meaningful impact on misinformation. 
While large followings often confer engagement, it remains pos-
sible that there is sufficient sharing from smaller accounts to ensure 
the spread of misinformation even in the absence of the larger  
removed accounts12.

One challenge in modelling account removal is that there are 
probably non-trivial relationships between account size, the pro-
pensity to share misinformation and the timing at which certain 
accounts amplify narratives. A large account that regularly shares 
misinformation in the first five minutes will have an outsized effect 
compared with a smaller account that occasionally shares misinfor-
mation hours later. To account for this, our model samples from 
the empirical follower-count distribution in a given time step. 
Furthermore, as the identities of individuals are known, we can 
remove specific accounts and simulate total engagement (Methods). 
In other words, our simulations are conditioned on unseen patterns 
of and variation in individual behaviour without explicitly quantify-
ing the differences in individual behaviour. Our model and simu-
lations therefore exhibit robustness to considerable unmeasured 
real-world complexity.
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We first consider the consequences of account removals 
(N = 1,504) in early 2021. These accounts were identified by exam-
ining accounts with posts in our dataset that could not be retrieved 
with an API call in late January. We seek to answer whether previ-
ously implemented account removal is sufficient to curb misinfor-
mation going forward. Our simulations reveal that the removal of 
these accounts from our dataset reduces total engagement with mis-
information by 30% (89% CI, (10.2, 22.7), Fig. 3c). This is compara-
ble in efficacy to a 10% reduction in the sharing of misinformation 
(that is, a nudge) impacting all accounts in the absence of removal.

We next consider a ‘three-strikes’ rule in which accounts are 
removed from the platform after they are detected in three separate 
incidents of misinformation (that is, topics, regardless of the num-
ber of posts on a given topic). For these simulations, any interaction 
with or amplification of misinformation (that is, tweets, retweets 
or quote tweets) would be counted as a strike. A policy focused 
solely on original content could be gamed by using large accounts 
to amplify smaller disposable accounts. This type of policy would 
avoid banning accounts that were swept up by a given piece of mis-
information and repeatedly tweeted while focusing on those that 
spread misinformation more broadly. When the policy is applied 
solely to verified accounts, we observe a 12.7% drop in cumulative 
engagement (89% CI, (2.3, 23)), which likewise is similar in efficacy 
to a small nudge rolled out across the board (Supplementary Table 6  

and Fig. 3c). If, instead of verification, the policy is applied on the 
basis of the number of followers an account has, pronounced effects 
are observed only when the threshold is quite low (~10,000 follow-
ers), requiring large numbers of accounts to be removed (Fig. 3b,d 
and Supplementary Table 7).

Combined approaches. All of the approaches above exhibit 
some efficacy in reducing engagement with viral misinformation. 
Unfortunately, each strategy tends to become maximally effective 
in impractical regions of parameter space. The outright removal of 
misinformation is particularly effective, yet it is difficult to imag-
ine that more than a small fraction of misinformation can be easily 
removed. Virality circuit breakers face similar challenges, albeit to a 
lesser extent. For nudges that minimally impact user experience yet 
improve individual discretion, effects far beyond ~20% are unlikely 
without a major breakthrough in information literacy or social 
psychology4. In the case of banning specific accounts, low follower 
thresholds increase the number of accounts removed, and thus the 
costs and challenges, super-linearly.

We therefore consider a combined approach relying on only 
modest implementations of each of the strategies studied above. 
Specifically, viral circuit breakers are employed for 5% of content, 
reducing virality by 10%, and enacted after 120 minutes. Of the 
content subjected to a viral circuit breaker, 20% is subsequently 
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removed outright after four hours. We further assume a 10% reduc-
tion in individual sharing of misinformation resulting from a 
nudge. Finally, accounts that have been removed remain banned, 
and a three-strikes policy is applied to verified accounts and those 
with more than 100,000 followers. Our model reveals that even a 
modest combined approach can result in a 53.3% (89% CI, (48.2, 
58.2)) reduction in the total volume of misinformation (Fig. 4a and 
Supplementary Table 8).

We additionally consider a more aggressive version of a com-
bined policy, applying viral circuit breakers to 10% of content 
and reducing virality by 20% while cutting response times in half. 
We further assume a 20% nudge and reduce the threshold for 
the three-strikes policy to 50,000 followers. This more aggressive 
approach dramatically reduces misinformation by 63.0% (89% CI, 
(58.4, 66.9); Fig. 4b and Supplementary Table 9). Similar efficacy 
from standalone approaches would either be impossible or require 
draconian removal of content and accounts.

One limitation of our model is that it relies on assumptions spe-
cific to periods of viral misinformation spread. In our dataset, only 
40% of posts occur during the largest event for a given incident. 
Yet 25% of engagement occurs after the largest event. The remain-
ing posts are either smaller events prior to the largest event or 
low-volume posts picked up by our search terms prior to the larg-
est event. While our model cannot provide direct insight into how 
interventions will impact engagement during these periods, we can 
gain indirect insight by considering the relationship between the 
size of an event and subsequent discussion.

Our data demonstrate that the size of an event is strongly pre-
dictive of subsequent engagement (Fig. 4c; Bayesian log-normal 
regression β = 0.94; 89% CI, (0.92, 0.95); Supplementary Table 10). 
Using this relationship, we can estimate subsequent discussion on 
the basis of simulated, intervention-adjusted engagement during 
the largest event (Methods). Through this method, we reveal that 
the impact of interventions on post-event engagement is likely to 
be similar in magnitude to the efficacy during an event (Fig. 4d and 
Supplementary Fig. 1).

Discussion
Our derived model, grounded in data, provides quantitative insight 
into the relative efficacy of proposed interventions. We reveal 
through simulation that proposed interventions are unlikely to be 
effective if implemented individually at plausible levels. Effective 
removal of content or virality circuit breakers would require large 
teams and rapid turn-around times and would place content deci-
sions squarely in the hands of private organizations. Nudges are 
promising but unlikely to be a panacea at known levels of efficacy4. 
Banning accounts seems to be the most workable solution but would 
require the removal of tens of thousands of users to be effective.

However, our results show that combining interventions at plau-
sible levels of enforcement can effectively reduce the spread of viral 
misinformation. While it is unsurprising that multiple interventions 
outperform individual approaches, our findings provide insight 
into the magnitude of that difference. The efficacy of a combined 
approach depends not only on the nature of individual interven-
tions but also on how they interact with one another, the dynamics 
of misinformation spread, the event duration, user sharing behav-
iour, user follower counts and how these factors change throughout 
a disinformation campaign. In fitting our model to a large corpus 
of events during an active period of mis- and disinformation, our 
results are conditioned on much of this complexity. Furthermore, by 
drawing from the empirical distribution of users’ follower counts, 
our model indirectly and implicitly accounts for unseen behavioural 
patterns of users and changes to their follower counts over time.

Our theoretical approach is limited in several key ways. Most 
notably, practical and ethical challenges preclude experimental 
validation of our theoretical findings. As our model evaluates the 

spread of viral misinformation at scale, experimental validation 
would require Twitter to adopt these interventions and apply them 
to millions of users. Moreover, limited transparency regarding the 
interventions used by Twitter makes it possible that some of the 
simulated interventions were in place, and our simulations reveal 
the benefit of increasing those interventions beyond their imple-
mented amount9. Increased transparency on the part of platforms 
will be critical for future research on estimating the efficacy of 
interventions.

What further remains unclear is how changes in the magnitude 
of events will impact the longer-term dynamics of misinformation 
and translate to a reduction in harm. If implemented in tandem, 
multiple interventions may prove a sufficient shock to collapse the 
misinformation ecosystem altogether, as shock-induced collapse 
is a central feature of complex systems13. For instance, subsequent 
events probably depend on the size of previous events, and breaking 
that feedback could lead to greater gains than expected. However, 
this same body of literature suggests that an insufficient shock may 
yield only short-term changes as the system re-organizes and adapts.

We note that the results presented here rely on a simplified model 
of events on a single platform in a highly complex, multi-platform 
system. These types of simplifications are an inherent limita-
tion of any approach—short of risky, large-scale experimentation. 
However, abstract models of complex processes have proved essen-
tial to predicting the benefits of interventions on complex systems, 
from mitigating the spread of disease to stabilizing ecosystems14,15. 
Models provide particular utility when experiments are unethical 
and impractical and the costs of inaction are high. Given the sub-
stantial risks posed by misinformation in the near term, we urgently 
need a path forward that goes beyond trial and error or inaction. 
Our framework highlights one such approach that can be adopted 
in the near term without requiring large-scale censorship or major 
advances in cognitive psychology and machine learning.

Methods
Data collection and processing. All data were collected in accordance with the 
University of Washington Institutional Review Board. Our dataset was collected in 
real time during the 2020 US election. We relied on a set of 160 keywords to collect 
posts from Twitter’s API (1.04 billion). The keywords were updated in response 
to new narratives—for instance, adding ‘sharpiegate’ and related terms after false 
narratives emerged about the use of Sharpie markers invalidating ballots. Working 
with the Electoral Integrity Partnership, we catalogued instances of false or 
misleading narratives that were either detected by the team or reported by external 
partners2. This led to a large corpus of tickets associated with validated reports of 
misleading, viral information about election integrity.

Tickets that shared a common theme were consolidated into incidents. We 
developed search terms and a relevant date range for each incident to query posts 
from our tweet database. Incidents (N = 430) were generally characterized by one or 
more periods of intense activity followed by returning to a baseline state (Fig. 1a). 
The search terms and descriptions of the incidents are provided along with the data.

We then wished to extract segments of the time series that exhibit macroscopic 
features consistent with viral dynamics. More specifically, candidate events should 
exhibit quiescent periods before and after the event where our search terms return 
to baseline levels. However, multiple peaks may occur between these boundaries. 
To extract candidate events, we computed the raw time series of post volume per 
five minutes for each of our distinct incidents. We then identified events by finding 
the five-minute interval within the aggregated time series with the largest number 
of collected posts. Other peaks in activity were considered part of separate events 
if they were at least 30% of the magnitude of the largest peak (to filter out noise). 
Starting with the largest peak, we identified its boundaries as the points before 
and after the peak where the number of posts in five minutes was less than 5% of 
the maximum volume. This may include multiple peaks within the same event, if 
no quiescent period occurred between them. We then repeated this process for all 
remaining peaks. If periods of activity less than 5% of the maximum peak height 
did not occur within the range of data collection, the first (or last) time point 
collected was used to denote the beginning (or end) of an event. Finally, events 
were required to last at least an hour (that is, 12 data points). This process extracted 
544 candidate events from 269 incidents.

Statistical and computational model. Model derivation. We then derived a model 
of spreading dynamics during viral misinformation cascades. We restricted our 
model to the dynamics of misinformation flow within a single event rather than 
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longer-timescale processes such as the adoption of beliefs and behaviours. The 
spread of beliefs and behaviours often requires that multiple neighbours have 
adopted the state (that is, a complex contagion)16. The acceptance of a given 
misinformation narrative, for instance, can involve complicated cognitive processes 
involving partisan leanings, prior knowledge, attention, the message content and a 
host of other factors4,17.

Re-sharing of information on Twitter, however, requires solely that a 
single neighbour has shared a piece of content for it to potentially be seen and 
retweeted18,19. Moreover, empirical work has demonstrated that out-degree 
(follower count) nearly linearly predicts engagement20,21. These features are 
hallmarks of simple contagions at the timescales of interest in our events. 
Following previous work, we therefore model the spread of viral misinformation 
as a simple contagion22,23. At the core of our model is a latent virality parameter, 
v, which tracks the amount of attention a topic is garnering over time. Unlike 
typical compartmental models, accounts vary widely in their out-degree from 
0 followers to more than 100 million. In disease research, branching process 
models have incorporated various degree distributions to examine the role of 
super-spreaders14.

We built on models of super-spreading and leverage the fact that the out-degree 
of each account can be estimated by their total followers24,25. When a user posts 
during an event, our model assumes that virality is increased proportionately to 
their number of followers (that is, the total exposed). However, network saturation 
and competition for attention with other topics can reduce virality over time. We 
incorporate this by adding a decay function, such that virality naturally decays over 
time. Together, growth from sharing and decay from saturation and competition 
define virality. Posts in a given time step are predicted by virality in the previous 
time step. These phenomena can be captured by a minimally parameterized 
branching process model, such that:

E[yt] = exp(α + βvt−1)

vt = vt−1δe−λt + xt−1

xt−1 = log
(

yt−1
∑

j=1
Fj,t−1

)

(1)

where yt is the number of posts (that is, retweets, tweets, replies and quote tweets) 
at five-minute interval time t, α is the baseline rate of discussion and β is the effect 
of virality, v. Virality is a latent parameter proportional to the total number of users 
at a given point in time that are exposed to misinformation. It represents the extent 
to which an event, at a given point in time, is visible in timelines across Twitter. 
Virality decays as an exponential function via δ and λ. Here, δ captures the baseline 
rate of decay per time step, and λ controls how that decay changes over the lifetime 
of an event. This could be due to algorithmic processes favouring new content or 
user saturation for very large events. Every time step, for each of yt accounts that 
posts, the log sum (xt) of their followers, Fj, is added to virality.

We note that our model does not explicitly incorporate a network, as is 
common in many simulations of information and behaviour spread online16. 
Our primary reason for doing this is that algorithmic filtering of content renders 
the true network topology unknown. Reconstructing a network would require 
additional epistemic assumptions, which could bias the results in opaque 
ways26. Moreover, research on disease has highlighted the utility of modelling 
interventions in the absence of network structure, notably when the degree 
distribution is known or approximated14. We note that the success of simple models 
in understanding the spread of infectious disease is not due to simplistic contagion 
dynamics. For disease, daily interactions, immune-system dynamics, population 
structure, behaviour and air-flow patterns create remarkably complex and dynamic 
network topologies of disease spread.

Our model was fit to each event using PyStan v.2.9.1.1 (refs. 27,28). We fit 
events separately (rather than hierarchically) as they varied widely in their 
timescales, magnitudes and contexts within the broader 2020 election cycle. Of 
the 544 candidate events, our model performed well on 454 events (~10.4 million 
posts) of rapid misinformation spread. Our model was unlikely to be suitable for 
all events because it assumes that post volume is well predicted by the number 
of previously exposed accounts on Twitter. If, for instance, an incident received 
substantial news coverage (for example, Dominion software narratives), our 
model would probably fail.

To safeguard against this, we relied on a number of criteria to ensure model 
fit to a given event. Events were included in the final analysis if (1) the posterior 
89% CI of total posts contained the observed value, (2) the chains successfully 
converged for all parameters ( R̂ < 1.1), (3) the fit did not contain divergent 
transitions and (4) the event lasted longer than an hour (that is, >12 data points 
to fit). Other than these criteria, events surrounding the Dominion narrative were 
removed as they involved long periods of high-volume online discussion. This 
filtering process resulted in the inclusion of 454 events (83% of total events) and 
~10.4 million posts.

Statistical model. We derived parameters for our model statistically using a 
custom-written model in Stan27. Posts yi at time t are assumed to be distributed  
as a gamma–Poisson mixture (that is, negative binomial) with expected value μt. 

A gamma–Poisson distribution was chosen because it allows for overdispersion of 
discrete events occurring in a fixed interval (here, posts). Specifically:

yt ∼ NegativeBinomial2(μt,ϕ) for t = 2...T

μi = exp(α + βvt−1) for t = 2...T

vt = vt−1δe−λt + xt−1

α ∼ Normal(−3, 3)

β ∼ Normal(0, 3)

δ ∼ Beta(1, 1)

λ ∼ HalfExponential(1)

ϕ ∼ HalfExponential(1)

v1 = x1

xt−1 = log
(

yt−1
∑

j=1
Fj + 1

)

Here α is the baseline rate of detection for related keywords, and β is the effect 
of virality, v, on posts in a subsequent time step. Virality is calculated as a decaying 
function of vt−1 and the log of the sum of account follower counts Fj for posts in the 
previous time step. One follower is added to each user to avoid an undefined value 
in time steps with no followers. The log transform accounts for the link function 
(exp), transforming the linear model into an expected value for the negative 
binomial distribution. Given the wide range of possible event shapes, generic, 
weakly informative priors were chosen for all parameters. The models were fit 
using NUTS in PyStan with the default sampling parameters27,28.

Computational model. Our computational model relied on the posterior 
distributions of parameters obtained from fitting our statistical model separately 
to each event. For each simulation, one sample was drawn at random from the 
posterior for a given event. At t = 1, the model was initialized with the volume 
of posts and total exposed users from the first time step in which any posts were 
observed. At each subsequent time step, our computational model predicted the 
number of new posts, yt, by sampling from a negative binomial distribution as 
per our statistical model. For each of yt new posts, we drew a follower count from 
the actual distribution of accounts that retweeted for that event at that time step. 
Doing so allowed us to control for the possibility that some accounts tend to 
appear earlier in a viral event. This process was repeated for the duration of the 
actual event.

We simulated the removal of misinformation by simply setting yt+1 = 0 after at a 
specified intervention time, t. Virality circuit breakers were enacted by multiplying 
virality at each time step by a constant. For example, a 10% reduction in virality 
was implemented as v̂t = vt(1 − 0.1). As with content removal, this occurred 
only after a specified time step. In the case of the combined approach, virality 
circuit breakers (and subsequent removal) were employed at a given probability 
for each simulation run. We implemented nudges via multiplying follower counts 
by a constant, reducing the pool of susceptible accounts (that is, for account j, 
F̂j = Fj(1 − η)). Finally, we implemented a three-strikes rule by identifying the 
third incident in which a given account appeared in our full dataset. They were 
removed from simulations for all events that occurred after their third strike.

Additionally, our model included a maximum value of twice the observed posts 
per time interval to account for a rare condition in which long-tail parameters 
would lead to runaway. This was observed to occur rarely enough to be challenging 
to quantify (<1% of model runs), but it was implemented to reduce upward bias 
in control conditions. We did this to ensure conservative estimates of efficacy, 
as interventions could reduce the possibility of runaway without meaningfully 
impacting engagement. Such a feature would be expected in any model of a growth 
process with exceptionally long-tailed distributions of follower counts and spread 
at a given time step (that is, a negative binomial).

For the figures shown in the main text and the tables presented in the 
Supplementary Information, we ran 500 simulations of all 454 events. For each 
run, we computed the cumulative engagement. The 500 simulations were summed 
across runs, from which we calculated the medians and CIs. All simulations were 
implemented in Python29 v.3.9.10.

Model validation. Some form of model validation strengthens any theoretical 
approach. As data-derived models of large-scale processes are uncommon in the 
social sciences, we offer some notes on validation and its limitations in this context. 
Ideally, our findings could be externally validated in an empirical setting. In our 
case, the gold standard would be to have Twitter implement our recommended 
policies in some locations but not others and examine subsequent engagement with 
viral misinformation.

Validation of this sort is both practically and ethically prohibitive. Ethically, the 
application of our theory to real-world social networks should occur after broader 
scientific scrutiny and not before publication. As these experiments impose actual 
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costs on the individuals impacted by platform policies, a complete evaluation by 
the scientific community is necessary to evaluate potential benefits and mitigate 
risks. Ethical challenges aside, such an experiment is impractical, as it would 
require Twitter to rewrite its platform guidelines and hire fact-checkers at our 
suggestion. To the extent that Twitter conducts internal experiments, observational 
validation by the scientific community (that is, natural experiments) is confounded 
by unseen changes in the user interface, algorithmic sorting, concurrent A/B 
testing or other aspects of the experiment that are not disclosed to researchers.

This is a problem inherent to any data-derived model of a complex system 
at scale. Climate models suggest that reducing greenhouse gases will slow 
climate change and highlight the relative efficacy of various approaches30. Yet 
empirical validation at scale would require convincing nations to experimentally 
reduce greenhouse gases alongside a control world where these policies are not 
applied. Similarly, an experiment involving altering conditions in an enclosed 
space may be consistent with data-derived models yet provide little additional 
insight31. Furthermore, there is no known orthogonal world in which models of 
anthropogenic disturbance can be externally validated. Nevertheless, models of 
greenhouse gas reduction remain our best hope at reversing climate change. A 
recent perspective has argued that similar approaches are probably necessary for 
the stewardship of our social systems10.

Here we take a similar approach to climate models to validate our model 
internally (that is, within our dataset). Climate models can be validated by 
allowing them to condition on data and then run freely for some period. If the 
model successfully retrodicts conditions at a future point in time, it provides 
evidence that the model captures the dynamics of interest. We follow much 
the same approach here, simulating total engagement from the initial tweet 
throughout an event. At the coarsest level, the total number of observed posts 
(10.4 million) falls within the 89% CI of our baseline simulations (10.8 million, 
89% CI, (9.8, 11.7)). On the scale of individual events, posterior predictive 
simulations recover the number of observed posts over several orders of 
magnitude, despite the model only being seeded with posts in the first time 
step and the time-varying empirical follower distribution (Supplementary 
Fig. 2). This holds true across several orders of magnitude in post volume and 
for events that vary widely in duration from one hour to several days. Visual 
inspection of posterior-predictive time series similarly indicates that our model 
recovers fine-grained temporal dynamics, even for our largest events where the 
number of data points far exceeds the model parameters (Supplementary Fig. 
3). Considering the relatively small number of parameters (five in this model), 
this provides evidence that our model is adequately capturing key features of the 
underlying temporal dynamics.

Post-event engagement. Our model cannot directly evaluate post-event 
engagement, as it is designed to capture viral spreading dynamics rather than 
long, noisy periods of posting about a topic. These periods would be difficult to 
capture directly with a generative model, making it challenging to infer the impact 
of interventions on misinformation about a topic in general. However, there exists 
a quite regular relationship between the proportion of posts that occur within our 
definition of an event and those that occur subsequent to the event (Fig. 4c).

We can leverage this fact to gain insight into how interventions may impact 
discussion following the viral periods we analysed. To accomplish this, we used a 
Bayesian log-normal regression to estimate the effect of posts within the largest 
event on subsequent engagement (Supplementary Table 10):

β ∼ Cauchy(0, 1)

σ ∼ Cauchy(0, 1)

μ = βx

y ∼ LogNormal(μ, σ)

Here, y is post-event engagement, and x is engagement during the largest event. 
The intercept is set at zero, as an event with no posts would not be expected to 
produce subsequent posts. We then use the posterior distribution from this model 
to estimate subsequent engagement as a function of engagement during our 
simulated events with intervention. This is summed across events to generate the 
estimates shown in Fig. 4d. This method provides insight, but we note that it is 
limited by the assumption that the relationship between within- and post-event 
engagement is invariant to interventions. Furthermore, it is limited by the extent to 
which our data collection process captured posts across the entire incident (that is, 
event and subsequent posts).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Given Twitter’s data use agreement, we cannot release the full dataset. However, we 
have made available aggregated time series sufficient to reproduce our findings. 
The data to reproduce the results are available on Zenodo (https://doi.org/10.5281/
zenodo.6480218).

Code availability
The code to reproduce the results is available on Zenodo (https://doi.org/10.5281/
zenodo.6478446). Any updates to the code can be found on GitHub (https://github.
com/josephbb/CombinedPoliciesMisinfo).
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python packages are available in the "requirements.txt" file of the code respository. Code to reproduce the results is available on Zenodo 
(https://doi.org/10.5281/zenodo.6478446). Any updates to the code can be found on Github (https://github.com/josephbb/
CombinedPoliciesMisinfo) 
 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Given Twitter's Data Use-Agreement, we cannot release the full dataset. However, we have made available aggregated time-series sufficient to reproduce our 
findings. Data to reproduce the results are available on Zenodo (https://doi.org/10.5281/zenodo.6480218). 
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Our study involved deriving a model of viral information spread to examine the impact of interventions aimed at reducing the spread 
of viral misinformation. To do so, we collected a large number of Tweets related to the US 2020 Presidential election. Mixed-methods 
approaches were used to identify distinct incidents (specific narratives) of misinformation and associated search terms. These search 
terms were used to distinguish incidents and extract relevant tweets from our larger database. We then used quantitative methods 
to segment incidents into distinct events. Finally, we used this dataset to derive a mathematical model of misinformation spread and 
examine the likely impact of commonly proposed interventions.  
 
 

Research sample Our sample involves users on Twitter that posted about topics related to the 2020 US presidential elections. Given the large initial 
volume of Tweets collected and the large team of individuals used to identify and collect misinformation narratives, we believe the 
dataset is representative of English-language tweets in the US about the 2020 presidential election. This sample was used as the 
electoral integrity partnership and Twitter's open API provided a unique opportunity to gather the data needed to apply our 
approach. 

Sampling strategy We sampled randomly and used all tweets that matched the criteria. A sample size calculation was not necessary. 

Data collection All data were collected in accordance with the University of Washington Institutional Review Board. Our dataset was collected in real-
time during the 2020 US election. We relied on a set of 160 keywords to collect posts from Twitter's API (1.04 billion). Keywords were 
updated in response to new narratives, for instance, adding "sharpiegate" and related terms after false narratives emerged about the 
use of Sharpie markers invalidating ballots. Working with the Electoral Integrity Partnership, we cataloged instances of false or 
misleading narratives that were either detected by the team or reported by external partners.. This led to a large corpus of tickets 
associated with validated reports of misleading, viral information about election integrity.  
 
Tickets that shared a common theme were consolidated into incidents. We developed search terms and a relevant date range for 
each incident to query posts from our tweet database. Incidents (N=430) were generally characterized by one or more periods of 
intense activity followed by returning to a baseline state. Search terms and descriptions of incidents are provided along with the data. 

Timing September 1st 2020 to December 15th 2020 

Data exclusions Our model was fit to each event using PyStan 2.9.1.1. We fit events separately (rather than hierarchically) as they varied widely in 
their time scales, magnitudes, and context within the broader 2020 election cycle. Of the 544 candidate events, our model 
performed well on 454 events (10.4 Million posts/tweets) of rapid misinformation spread. Our model was unlikely to be suitable for 
all events as it makes the assumption that post volume is well predicted by the number of previously exposed accounts on Twitter. 
 
To safeguard against this, we relied on a number of criteria to ensure model fit to a given event. Events were included in the final 
analysis if a) the posterior 89% C.I. of total posts contained the observed value and b) the chains successfully converged for all 
parameters (r_hat < 1.1) c) The fit did not contain divergent transitions and d) the event lasted longer than an hour (i.e., >12 data 
points to fit). Other than these criteria, events surrounding the Dominion narrative were removed as they involved long periods high 
volume online discussion. This filtering process resulted in the inclusion of 454 events (83% of total events), and 10.4 million posts. 

Non-participation Analyses were conducted on digital trace data, and no participants were explicitly used. 
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Randomization This study does not have explicit experimental and control groups, so no randomization was needed. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Users on Twitter

Recruitment Data were collected via the API as they were publicly available. 

Ethics oversight University of Washington IRB

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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